Oracle

How to Integrate Oracle Fusion Cloud Apps Data into a Data Warehouse

Women Discussing Data

As organizations are moving faster to reduce their inhouse infrastructure, database and application management overhead, many are migrating their legacy on-premises ERP, SCM, HCM, and CX applications to Oracle Fusion Cloud Applications. And it is very common to see such organizations already invested in a consolidated data warehouse. A data warehouse is typically a common target of all data sets from various applications. Therefore, migrating applications to Oracle SaaS requires a good understanding of the future state of the data warehouse and reporting, as these co-exist with the overall systems architecture. Some organizations have evaluated keeping their on-premises data warehouse as-is, and therefore feeding it data from Fusion apps. While this may sound like an easier to do approach, in comparison to building a data warehouse from the ground up, it does have challenges. As a result, many lean more towards investing in a more futuristic approach to analytics altogether, an approach that is compatible with the modernity of the Fusion apps and provides the flexibility, governance and advanced functionality expected by the business community.

Whether the decision is to keep your current data warehouse and feed it Fusion Cloud apps data, or build a new one altogether, in this blog I will present different approaches to extracting data from Fusion Cloud apps. Each of the approaches has certain advantages over the rest, depending on your future state architecture and the source applications involved in data consolidation for reporting. My aim here is to present these differentiating characteristics of each approach and therefore help in finding the most suitable platform to feed Fusion data into a data warehouse.

Oracle - Guide to Oracle Cloud: 5 Steps to Ensure a Successful Move to the Cloud
Guide to Oracle Cloud: 5 Steps to Ensure a Successful Move to the Cloud

Explore key considerations, integrating the cloud with legacy applications and challenges of current cloud implementations.

Get the Guide

The table below compares six different platforms to accomplish this type of integration. A few remarks on this analysis:

  • Data Sync is listed below as one of the options. While Oracle Data Sync 2.6.1 is still available from Oracle for download and is currently supported, it is considered an outdated tool. For your roadmap, you are highly encouraged not to rely on Data Sync for your future state analytics solution.
  • Fusion Analytics Warehouse (FAW) is not listed below as one of the options. However, FAW should be a very viable option for you to implement if you are on Fusion Cloud Apps. It offers pre-built ETL from Fusion Apps to an Autonomous Data Warehouse. In addition, its extensibility framework allows for adding in customization at the data warehouse, semantic model and dashboard levels. It is excluded from this analysis since it offers an end-to-end solution and is fully managed by Oracle.
  • BI Publisher: BI Publisher allows exporting data from Fusion apps, however, its good at handling limited use cases. It is not recommended as a general approach to integrating Fusion apps data into a data warehouse, due to the complexity of managing and maintaining a large number of such data exports.

 

OAC Direct Query OAC BICC Replication Oracle Data Sync OCI Data Integration ODI Web (Data Transforms) Incorta Oracle Cloud App Connector
Requires Additional Software Install & Maintenance No No Yes No Yes No
Cloud Infrastructure Yes Yes Yes (IaaS is optional) Yes Yes Yes (IaaS is optional)
Cloud Platform Yes – Oracle Managed Yes – Oracle Managed No – Platform is Customer Managed Yes – Oracle Managed No – Platform is Customer Managed Yes (PaaS is optional)
Leverages Fusion OTBI Yes: Real-time No Yes No No No
Leverages Fusion BICC No Yes Not natively, can read from OCI Object Storage if BICC is configured outside of Data Sync Yes Yes Yes
Supports Extracts from Custom Fusion PVOs No Yes Requires manual config through BICC With Parameters Yes Yes
Supports Real-time Reporting on Fusion Data Yes No No No No No
Supports Incremental Loads Not applicable Yes Yes Yes Yes Yes
Supports Handling of Deletes Not applicable Yes – native automatic handling No Yes – Requires custom handling of deletes Yes – Requires custom handling of deletes Yes – Requires custom handling of deletes
Supports Historical Changes Tracked in Fusion Not applicable Yes No Yes, if source PVO includes historical updates Yes, if source PVO includes historical updates Yes, if source PVO includes historical updates
Automatic Management of BICC Runs and exported CSV Files Not applicable Yes No Yes Yes BICC runs are managed directly in BICC, CSV Files are managed by Incorta Connector
Supports Filtering Extracts Yes Yes Yes Yes Yes Yes
Supports Scheduling of Data Extracts Not applicable Yes Yes Yes Yes Yes
Allows for Data Transformation (such as joining Fusion to non-Fusion data while loading) Not applicable No Yes (also supports sourcing from Amazon, Redshift, Apache Hive, Azure SQL DB, SQL Server, MySQL, Amazon S3, OCI Object Storage, PostgreSQL) Yes (also supports sourcing from Parquet, Azure, SQL Server, PostgreSQL, Apache Hive and Amazon) Yes (also supports sourcing from Oracle DB, MS SQL Server, MySQL, Salesforce, NetSuite, Cassandra, Hypersonic SQL, IBM DB2 UDB, Informix) No (transformation is possible post data ingestion)
Supported Data Load Targets Not applicable Oracle DBs (including Autonomous) Oracle DBs (including Autonomous), MySQL, OCI Object Storage (CSV, JSON, Parquet, Avro) Oracle DBs (including Autonomous), OCI Object Storage (CSV, JSON, Parquet, Avro) Oracle DB, MS SQL Server, MySQL Incorta Shared Storage (Parquet Files)

 

About the Author

More from this Author

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Subscribe to the Weekly Blog Digest:

Sign Up
Categories