“Powerful technologies require equally powerful ethical guidance.” (Bostrom, N. Superintelligence: Paths, Dangers, Strategies. Oxford University Press, 2014).
The ethics of using artificial intelligence depend on how we apply its capabilities—either to enhance learning or to prevent irresponsible practices that may compromise academic integrity. In this blog, I share reflections, experiences, and insights about the impact of AI in our environment, analyzing its role as a creative tool in the hands of developers and as a challenge within the academic context.
Between industry and the classroom
As a Senior Developer, my professional trajectory has led me to delve deeply into the fascinating discipline of software architecture. Currently, I work as a Backend Developer specializing in Microsoft technologies, facing daily the challenges of building robust, scalable, and well-structured systems in the business world.
Alongside my role in the industry, I am privileged to serve as a university professor, teaching four courses. Three of them are fundamental parts of the software development lifecycle: Software Analysis and Design, Software Architecture, and Programming Techniques. This dual perspective—as both a professional and a teacher—has allowed me to observe the rapid changes that technology is generating both in daily development practice and in the formation of future engineers.
Exploring AI as an Accelerator in Software Development
One of the greatest challenges for those studying the software development lifecycle is transforming ideas and diagrams into functional, well-structured projects. I always encourage my students to use Artificial Intelligence as a tool for acceleration, not as a substitute.
For example, in the Software Analysis and Design course, we demonstrate how a BPMN 2.0 process diagram can serve as a starting point for modeling a system. We also work with class diagrams that reflect compositions and various design patterns. AI can intervene in this process in several ways:
- Code Generation from Models: With AI-based tools, it’s possible to automatically turn a well-built class diagram into the source code foundation needed to start a project, respecting the relationships and patterns defined during modeling.
- Rapid Project Architecture Setup: Using AI assistants, we can streamline the initial setup of a project by selecting the technology stack, creating folder structures, base files, and configurations according to best practices.
- Early Validation and Correction: AI can suggest improvements to proposed models, detect inconsistencies, foresee integration issues, and help adapt the design context even before coding begins.
This approach allows students to dedicate more time to understanding the logic behind each component and design principle, instead of spending hours on repetitive setup and basic coding tasks. The conscious and critical use of artificial intelligence strengthens their learning, provides them with more time to innovate, and helps prepare them for real-world industry challenges.
But Not Everything Is Perfect: The Challenges in Programming Techniques
However, not everything is as positive as it seems. In “Programming Techniques,” a course that represents students’ first real contact with application development, the impact of AI is different compared to more advanced subjects. In the past, the repetitive process of writing code—such as creating a simple constructor public Person(), a function public void printFullName() or practicing encapsulation in Java with methods like public void setName(String name) and public String getName()—kept the fundamental programming concepts fresh and clear while coding.
This repetition was not just mechanical; it reinforced their understanding of concepts like object construction, data encapsulation, and procedural logic. It also played a crucial role in developing a solid foundation that made it easier to understand more complex topics, such as design patterns, in future courses.
Nowadays, with the widespread availability and use of AI-based tools and code generators, students tend to skip these fundamental steps. Instead of internalizing these concepts through practice, they quickly generate code snippets without fully understanding their structure or purpose. As a result, the pillars of programming—such as abstraction, encapsulation, inheritance, and polymorphism—are not deeply absorbed, which can lead to confusion and mistakes later on.
Although AI offers the promise of accelerating development and reducing manual labor, it is important to remember that certain repetition and manual coding are essential for establishing a solid understanding of fundamental principles. Without this foundation, it becomes difficult for students to recognize bad practices, avoid common errors, and truly appreciate the architecture and design of robust software systems.
Reflection and Ethical Challenges in Using AI
Recently, I explained the concept of reflection in microservices to my Software Architecture students. To illustrate this, I used the following example: when implementing the Abstract Factory design pattern within a microservices architecture, the Reflection technique can be used to dynamically instantiate concrete classes at runtime. This allows the factory to decide which object to create based on external parameters, such as a message type or specific configuration received from another service. I consider this concept fundamental if we aim to design an architecture suitable for business models that require this level of flexibility.
However, during a classroom exercise where I provided a base code, I asked the students to correct an error that I had deliberately injected. The error consisted of an additional parameter in a constructor—a detail that did not cause compilation failures, but at runtime, it caused 2 out of 5 microservices that consumed the abstract factory via reflection to fail. From their perspective, this exercise may have seemed unnecessary, which led many to ask AI to fix the error.
As expected, the AI efficiently eliminated the error but overlooked a fundamental acceptance criterion: that parameter was necessary for the correct functioning of the solution. The task was not to remove the parameter but to add it in the Factory classes where it was missing. Out of 36 students, only 3 were able to explain and justify the changes they made. The rest did not even know what modifications the AI had implemented.
This experience highlights the double-edged nature of artificial intelligence in learning: it can provide quick solutions, but if the context or the criteria behind a problem are not understood, the correction can be superficial and jeopardize both the quality and the deep understanding of the code.
I haven’t limited this exercise to architecture examples alone. I have also conducted mock interviews, asking basic programming concepts. Surprisingly, even among final-year students who are already doing their internships, the success rate is alarmingly low: approximately 65% to 70% of the questions are answered incorrectly, which would automatically disqualify them in a real technical interview.
Conclusion
Artificial intelligence has become increasingly integrated into academia, yet its use does not always reflect a genuine desire to learn. For many students, AI has turned into a tool for simply getting through academic commitments, rather than an ally that fosters knowledge, creativity, and critical thinking. This trend presents clear risks: a loss of deep understanding, unreflective automation of tasks, and a lack of internalization of fundamental concepts—all crucial for professional growth in technological fields.
Various authors have analyzed the impact of AI on educational processes and emphasize the importance of promoting its ethical and constructive use. As Luckin et al. (2016) suggest, the key lies in integrating artificial intelligence as support for skill development rather than as a shortcut to avoid intellectual effort. Similarly, Selwyn (2019) explores the ethical and pedagogical challenges that arise when technology becomes a quick fix instead of a resource for deep learning.
References:
- Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). Intelligence Unleashed: An Argument for AI in Education. Pearson Education. [Available at: https://www.pearson.com/content/dam/one-dot-com/one-dot-com/global/Files/about-pearson/innovation/open-ideas/Intelligence-Unleashed-Publication.pdf]
- Selwyn, N. (2019). Should Robots Replace Teachers? AI and the Future of Education. Polity Press.
